

Trying Not to Build the Same Old Spacecraft: Structural and Political Issues in Design

Charlotte Linde

Paper for Society for the Social Study of Science 2005
Conference
EARLY DRAFT

Spacecraft Design and Design Inheritance

- A spaceship is iconic of the future
- Spacecraft design requires strong inheritance from past designs
 - Expensive, complex and risky
 - Low number of prior examples and flights –
 Compare shuttle flights with airplane flights
- This talk discusses the social and economic factors forcing design inheritance

Slide background: Spacecraft picture

NASA's Spacefaring Plans

- Describe President's Space Vision
 - Crewed and Robotic Lunar Landings
 - Lunar Habitat
 - On to Mars
- Quote from briefing

An Anthropologist (Working) On Mars: How I'm Involved

- As part of this effort, I have been a member of two spaceship planning teams
 - Orbital Space Plane Requirements Team
 - An earlier design effort
 - I was helping to design and evaluate requirements in the areas of knowledge management, training, the human side
 - NASA Ames Crew Exploration Vehicle Team
 - Team working on developing NASA partnerships with industry
 - I was representing the area of knowledge management, particularly in Integrated Vehicle Health Management Systems

Previous Design Efforts

- The X30 series
- Orbital Space Plane
- Crew Exploration Vehicle
- Current Apollo-like architecture

Planning for the Future

- This is a multi-decade plan
 - Can not make detailed plans for technology not yet developed
 - Plan includes "spiral development" –
 essentially planning to plan
 - Definition of spiral development

Problems of Long-term Planning

- No one wants to be responsible for the next Y2K problem
 - An obvious design flaw that could have been anticipated
- More thoughtful designers don't want to be responsible for the next QWERTY keyboard
 - A good solution for its time
 - Could be improved or replaced once new keyboard technologies are designed
 - Problem is social: an installed base of users can not be made to switch to a better design when the technology changes

Picture of designer at sketchboard with thought balloon of old typewriter

The System of AeroSpace: A NASA-Centric View

Factors Leading to Change

- Political changes
 - Funding of Apollo program
 - Faster Better Cheaper missions
- Mission demands: doing something that has never been done before
- Availability of new technologies
 - Can lead to change, but not necessarily
- Changes in risk acceptability and risk management

Factors Retarding Change

- "They got it right the first time"
- Installed technology base
- Amount of risk acceptable
 - Old technologies with known failure parameters can be preferred to possible improvements with unknown failure parameters
 - Are there social mechanisms for learning from failures?
- Length of mission (as compared to rate of change of technology)
- Rate of change within spacecraft design subsystems

Rates of Change of Technologies

TIME

Strategies for Planning to Plan

- Spiral Development
- Modeling Technologies
 - Simulation Based Acquisition
- "Sockets" and "Modularity:
 - Attempts to leave room for the insertion of not yet developed technologies
 - Do we know what these are, or is this a pious hope?

Spacecraft Design: An Ideal Site for Studying Design Inheritance

- Time involved allows for easier study
 - This is the *longue durée* of technology
- Complex interaction of technical, political and societal factors
- Spaceships are cool